Elements of Bayesian Inference

January 23, 2019
The parameter as a random variable

- So far we have seen the *frequentist* approach to statistical inference where inferential statements about θ are interpreted in terms of repeated sampling.
- In contrast the Bayesian approach treats θ as a *random variable* taking values in Θ.
- The researcher’s information and beliefs about the possible values of θ, before observing the data, are summarised by a *prior distribution* $p(\theta)$.
- When data $X = x$ are observed, this is combined with the prior to obtain the *posterior distribution* $\pi(\theta|x)$.
- Bayesian methods are appropriate in many applications: e.g. spam filters, speech recognition, bioinformatics, machine learning, and many more.
Bayesian Inference: Introduction

In the Bayesian approach to inference, parameters are treated as random variables and hence have a probability distribution.

Prior information about θ is combined with information from sample data to estimate the distribution of θ.

This distribution contains all the available information about θ so should be used for making estimates or inferences.

We have prior information about θ given by the **prior distribution** $p(\theta)$ and information from sample data given by the **likelihood** $L(\theta, x) = f(x; \theta)$.

By Bayes Theorem the conditional distribution of θ given $X = x$ is

$$q(\theta; x) = \frac{f(x; \theta)p(\theta)}{h(x)} = \frac{L(\theta; x)p(\theta)}{h(x)} \propto L(\theta; x)p(\theta)$$

where $h(x)$ is the marginal distribution of x. We call $q(\theta; x)$ the **posterior distribution**.
Suppose I have 3 coins in my pocket:

1. biased 3:1 in favour of tails
2. a fair coin
3. biased 3:1 in favour of heads

I randomly select one coin and flip it once, observing a head. What is the probability that I have chosen coin 3?

Let $X = 1$ denote the event that I observe a head and $X = 0$ if a tail.

The probability of a head $\theta = (0.25, 0.5, 0.75)$ having equal prior probability.

The probability mass function $p(x|\theta) = \theta^x(1 - \theta)^{1-x}$ so $L(\theta; x) = P(x = 1|\theta) = \theta$
Inference about a discrete parameter

<table>
<thead>
<tr>
<th>Coin</th>
<th>θ</th>
<th>Prior $p(\theta)$</th>
<th>Likelihood $L(\theta; x)$</th>
<th>Un-normalised Posterior $p(\theta)L(\theta; x)$</th>
<th>Posterior $q(\theta; x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>1/3</td>
<td>0.25</td>
<td>0.083</td>
<td>0.167</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>1/3</td>
<td>0.50</td>
<td>0.167</td>
<td>0.333</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>1/3</td>
<td>0.75</td>
<td>0.250</td>
<td>0.500</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>1</td>
<td>0.75</td>
<td>$h(x) = 0.5$</td>
<td>1</td>
</tr>
</tbody>
</table>

The marginal distribution, or normalising constant $h(x) = \sum_i p(\theta_i)L(\theta_i; x)$.

So observing a head on a single toss of the coin means that there is now a 50% probability that the chance of heads is 0.75 and only a 16.7% probability that the chance of heads is 0.25.
Bayesian inference: How did it start?

In 1763, Reverend Thomas Bayes wrote:

PROBLEM.

Given the number of times in which an unknown event has happened and failed: *Required* the chance that the probability of its happening in a single trial lies somewhere between any two degrees of probability that can be named.

In modern language, given $x \sim \text{Bin}(n, \theta)$, what is $P(\theta_1 < \theta < \theta_2 | x, n)$?
Prior Distributions

The prior distribution $p(\theta)$ quantifies information about θ prior to any (further) data being gathered.

Sometimes $p(\theta)$ can be constructed on the basis of past data.

More commonly, $p(\theta)$ must be based on an expert’s experience and personal judgement.

Example

Suppose that the proportions θ of defective items in a large manufactured lot is unknown. The prior distribution assigned to θ is $U(0, 1)$, i.e.

$$p(\theta) = \begin{cases} 1 & \text{for } 0 < \theta < 1 \\ 0 & \text{otherwise.} \end{cases}$$
Example

Suppose that the lifetimes of lamps of a certain type are to be observed. Let X be the lifetime of any lamp and let $X \sim \text{Exp}(\beta)$, where β is unknown. On the basis of previous experience the prior distribution of β is taken as a gamma distribution with mean $r/\lambda = 0.0002$ and standard deviation $r/\lambda^2 = 0.0001$, i.e. $\text{Gamma}(r = 4, \lambda = 20000)$

$$p(\beta) = \begin{cases} \frac{20000^4}{3!} \beta^3 e^{-20000\beta}, & \beta > 0 \\ 0 & \text{otherwise.} \end{cases}$$
Prior Distributions

Example

A medical researcher was questioned about θ, the proportion of asthma sufferers who would be helped by a new drug. She thought that

$$P[\theta > 0.3] = P[\theta < 0.3]$$

i.e. that the median $\theta_{0.5} = 0.3$.

Similarly, she thought that

$$\theta_{0.25} = 0.2 \quad \text{and} \quad \theta_{0.75} = 0.45$$

From tables giving quantiles of beta distributions, the researcher’s opinion could be represented by $\text{Beta}(\alpha = 2, \beta = 4)$ for which

$$\theta_{0.25} = 0.194, \quad \theta_{0.5} = 0.314 \quad \text{and} \quad \theta_{0.75} = 0.454$$
Parameter Estimation

Suppose we wish to estimate a parameter θ. We define a loss function

$$L_s(\theta, \hat{\theta})$$

which measures the loss from taking $\hat{\theta}$ as an estimator when the true value is θ.

The Bayes estimator minimizes the expected loss

$$E \left[L_s(\theta, \hat{\theta}) | x \right] = \int_{-\infty}^{\infty} L_s(\theta, \hat{\theta}) q(\theta; x) d\theta$$

for the observed value of x.

The form of the Bayes estimator depends on the loss function that is used and the prior that is assigned to θ.

For example, if the loss is the absolute error

$$L_s(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$$

then the Bayes estimator $\hat{\theta}_B(x)$ is the median of the posterior distribution.

For other loss functions the minimum might have to be numerically estimated.
Exercise

A commonly used loss function is the squared error loss function

\[L_s(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 \]

Show that the corresponding Bayes estimator \(\hat{\theta}_B \) is equal to the mean of the posterior distribution.

\[\hat{\theta}_B(x) = E[\theta|x] \]

What is the minimum expected loss?
Continuing exercise 2

Example

Suppose that a random sample of \(n \) items is taken from the lot of manufactured items. Let

\[
X_i = \begin{cases}
1 & \text{if } \text{'i' th item is defective} \\
0 & \text{otherwise.}
\end{cases}
\]

then \(X_1, \ldots, X_n \) is a sequence of Bernoulli trials with parameter \(\theta \). The pdf of each \(X_i \) is

\[
f(x|\theta) = \begin{cases}
\theta^x (1 - \theta)^{1-x} & \text{for } x = 0, 1 \\
0 & \text{otherwise.}
\end{cases}
\]
Example

Then the joint pdf of \(X_1, \ldots, X_n \) is

\[
f_n(x|\theta) = \theta^{\sum x_i}(1 - \theta)^{n-\sum x_i}.
\]

Since the prior pdf \(p(\theta) \) is uniform it follows that

\[
f_n(x|\theta)p(\theta) = \theta^{\sum x_i}(1 - \theta)^{n-\sum x_i}, \quad 0 \leq \theta \leq 1.
\]

This is proportional to a beta distribution with parameters \(\alpha = y + 1 \) and \(\beta = n - y + 1 \), where \(y = \sum x_i \). Therefore the posterior has pdf

\[
q(\theta|x) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)}\theta^y(1 - \theta)^{n-y}, \quad 0 \leq \theta \leq 1.
\]
Example 3 contd.

Example

Suppose that the lifetimes X_1, \ldots, X_n of a random sample of n lamps are recorded. The pdf of each x_i is

$$f(x_i, \beta) = \begin{cases} \beta e^{-\beta x_i} & x > 0, \\ 0 & \text{otherwise}. \end{cases}$$

The joint pdf of $x_1, \ldots, x_n|\beta$ is $f(x|\beta) = \beta^n e^{-\beta y}$, where $y = \sum_{i=1}^n x_i$. With a gamma specified for $p(\beta)$ we have

$$f(x|\beta)p(\beta) \propto \beta^{n+3} e^{-(y+20000)\beta}$$

where a factor that is constant w.r.t. β has been omitted. The RHS is proportional to a $\text{Gamma}(n + 4, y + 20000)$, hence

$$q(\beta|x) = \frac{(y + 20000)^{n+4}}{(n + 3)!} \beta^{n+3} e^{-(y+20000)\beta}.$$
A **conjugate prior distribution** when combined with the likelihood function, produces a posterior distribution in the same family as the prior.

If we find a conjugate prior distribution which adequately fits our prior beliefs regarding θ, we should use it because it will simplify computations considerably.
Sampling from a Bernoulli Distribution

Suppose X_1, \ldots, X_n are a random sample from

$$\text{Be}(\theta), \quad 0 < \theta < 1.$$

Let $p(\theta)$ be

$$\text{Beta}(\alpha, \beta)$$

Then $q(\theta|x)$ is

$$\text{Beta}(\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i)$$

Proof: analogous to Example 2 (note $U(0, 1) \equiv \text{Beta}(1, 1)$).
Suppose we are interested in the true mortality risk θ in a hospital H which is about to try a new operation. The average hospital mortality rate is around 10%, but mortality rates in different hospitals vary from around 3% to around 20%. Hospital H has no deaths in their first 10 operations. What should we believe about θ?

Let $X_i = 1$ if the ith patient dies in H (zero otherwise) $i = 1, \cdots, n$. Then

$$q(\theta|x) = \text{Beta}(\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i), \ 0 < \theta < 1.$$
In practice we need to find a $\text{Be}(\alpha, \beta)$ prior distribution that matches the information from other hospitals.

A $\text{Be}(3, 27)$ prior distribution has mean 0.1 and $P(0.03 < \theta < 0.20) = 0.9$.

The data is $\sum_i x_i = 0$, $n = 10$, so the posterior distribution $q(\theta|x) = \text{Beta}(\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i) = \text{Be}(3, 37)$, which has posterior mean $E(\theta|x) = 3/40 = 0.075$.

Even though nobody has died so far, the MLE $\hat{\theta} = \sum_{i=1}^n x_i/n = 0$ (i.e. it is impossible that any will ever die) does not seem plausible.
install.packages("LearnBayes")
library(LearnBayes)
prior = c(a= 3, b = 27) # beta prior
data = c(s = 0, f = 10) # s events out of f trials
triplot(prior,data)
Exercise

Suppose X_1, \ldots, X_n are a random sample from

$$\text{Poisson}(\theta), \quad \theta > 0.$$

Let $p(\theta)$ be

$$\text{Gamma}(\alpha, \beta)$$

Show that $q(\theta|x)$ is

$$\text{Gamma}\left(\alpha + \sum_{i=1}^{n} x_i, \beta + n\right)$$
Sampling from a Normal Distribution with known σ^2

Suppose X_1, \ldots, X_n are a random sample from $N(\theta, \sigma^2)$ with σ^2 known.

Let $p(\theta)$ be $N(\phi, \tau^2)$.

Then $q(\theta|x)$ is

$$N \left(\frac{\phi \sigma^2 + n\bar{x}\tau^2}{\sigma^2 + n\tau^2}, \left(\frac{\sigma^2 + n\tau^2}{\sigma^2 \tau^2} \right)^{-1} \right)$$
Proof.

\[q(\theta|x) \propto p(\theta)L(\theta; x) \]

\[= (2\pi\tau^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \left(\frac{\theta - \phi}{\tau} \right)^2 \right\} \]

\[\times \prod_{i=1}^{n} (2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \left(\frac{x_i - \theta}{\sigma} \right)^2 \right\} \]

\[\therefore q(\theta|x) \propto \exp \left\{ -\frac{1}{2} \left[\theta^2 \left(\frac{1}{\tau^2} + \frac{n}{\sigma^2} \right) - 2\theta \left(\frac{\phi}{\tau^2} + \frac{\sum x_i}{\sigma^2} \right) \right] \right\} \]

\[= \exp \left\{ -\frac{\sigma^2 + n\tau^2}{2\sigma^2\tau^2} \left[\theta - \frac{\phi\sigma^2 + n\bar{x}\tau^2}{\sigma^2 + n\tau^2} \right]^2 \right\} + \text{constant} \]

i.e. \(q(\theta|x) \) is the pdf of \(\mathcal{N} \left(\frac{\phi\sigma^2 + n\bar{x}\tau^2}{\sigma^2 + n\tau^2}, \left(\frac{\sigma^2 + n\tau^2}{\sigma^2\tau^2} \right)^{-1} \right) \) as required. \qed
Note that the posterior variance

\[
\left(\frac{\sigma^2 + n \tau^2}{\sigma^2 \tau^2} \right)^{-1} = \left(\frac{1}{\tau^2} + \frac{n}{\sigma^2} \right)^{-1}
\]

i.e. the reciprocal of the sum of the reciprocals of the prior variance and the variance of the sample mean, respectively.

Because of this reciprocal relationship

\[
\text{precision} = \frac{1}{\text{variance}}
\]

is sometimes quoted instead of the variance.
The posterior mean

$$\frac{\phi \sigma^2 + n \bar{x} \tau^2}{\sigma^2 + n \tau^2} = \frac{\phi}{\tau^2} + \frac{\bar{x}}{\sigma^2/n} = \frac{1}{\tau^2} + \frac{1}{\sigma^2/n}$$

i.e. a weighted average of the prior mean ϕ and the sample mean \bar{x}, with weights proportional to the prior precision and the precision of the sample mean.

This type of relationship holds for several sampling distributions when a conjugate prior is used.
Sampling from an Exponential Distribution

Suppose X_1, \ldots, X_n are a random sample from $\text{Exp}(\theta), \; \theta > 0$.

Let $p(\theta)$ be $\text{Gamma}(\alpha, \beta)$

Then $q(\theta|x)$ is

$$\text{Gamma}\left(\alpha + n, \beta + \sum_{i=1}^{n} x_i\right)$$

Proof: see Example 3.
An **uninformative** or “flat” prior has $p(\theta) = \text{constant \ \forall \ \theta}$.

Such priors can sometimes be obtained as special or limiting cases of conjugate priors, e.g.

- using a Beta$(1, 1) = U(0, 1)$ prior for the Bernoulli parameter
- letting $\tau^2 \rightarrow \infty$ in the $N(\phi, \tau^2)$ prior for the mean of $N(\mu, \sigma^2)$ with known σ^2.

If the prior is fairly constant over the range of θ for which the likelihood is appreciable, then approximately

$$q(\theta|X) \propto L(\theta|X)$$

and inference becomes equivalent to ML estimation.
Problems with Uninformative Priors

If the prior range of θ is infinite, an uninformative prior cannot integrate to 1. Such an improper prior may lead to problems in finding a “proper” posterior.

We usually have some prior knowledge of θ and if we do we should use it, rather than claiming ignorance.
Jeffrey’s Prior

Another issue is whether an informative prior should be flat for θ or some function of θ, say θ^2 or $\ln \theta$.

One solution is to construct a prior which is flat for a function $\phi(\theta)$ whose Fisher information I_{ϕ} is constant. This leads to Jeffrey’s prior which is proportional to

$$I_{\theta}^{\frac{1}{2}} = E \left[\left(\frac{\partial \ln[L(\theta; x)]}{\partial \theta} \right)^2 \right]^{\frac{1}{2}} = \left[-E \left(\frac{\partial^2 \ln[L(\theta; x)]}{\partial \theta^2} \right) \right]^{\frac{1}{2}}.$$

Example

Suppose we are sampling from a Bernoulli distribution so that the likelihood is binomial. Show that in this case, Jeffrey’s prior is proportional to

$$[\theta(1 - \theta)]^{-\frac{1}{2}}$$

which is a Beta $\left(\frac{1}{2}, \frac{1}{2} \right)$ distribution.
Bayesian inference treats unknown parameters as variables with a probability distribution. **Hierarchical models** exploit the flexibility this gives.

Consider the following **three-stage hierarchical model**. The data x have density

$$f(x; \theta) \quad \text{[stage 1]}$$

where θ is unknown. Denote the prior distribution for θ by

$$p(\theta; \psi) \quad \text{[stage 2]}$$

where ψ is also unknown, with prior distribution

$$g(\psi) \quad \text{[stage 3]}.$$
Example

Suppose $\theta_1, \ldots, \theta_k$ are the average reading abilities of 7-year-old children in each of k different schools. Samples of 7-year-olds are to be given reading tests to estimate θ_i. Let X_{i1}, \ldots, X_{in_i} be the reading abilities of a sample of n_i children from school i. Suppose

$$X_{ij} \sim N(\theta_i, \sigma^2) \quad [\text{stage 1}]$$

where σ^2 is the same for all schools and is assumed known.
Example

Then let each θ_i be normally distributed, so that

$$p(\theta_1, \ldots, \theta_k; \psi) = \prod_{i=1}^{k} (2\pi \tau^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2\tau^2} (\theta_i - \phi)^2 \right\} \quad [\text{stage 2}]$$

where $\psi = (\phi, \tau)$. Finally assign an uninformative prior to ϕ and τ^2

$$g(\phi, \tau^2) = g_1(\phi)g_2(\tau^2) = \text{constant} \quad [\text{stage 3}].$$

Note that information about some of the θ_i provides information about the remainder (borrowing strength).

For example, if we had data from $k - 1$ schools, then we could estimate the average reading abilities $\theta_1, \ldots, \theta_{k-1}$. Hence we could estimate ϕ and τ^2, the mean and variance of the distribution of θ_k.
As usual

$$\text{posterior} \propto \text{prior} \times \text{likelihood}.$$

Here the unknown parameters are θ and ψ and their prior is

$$p(\theta; \psi)g(\psi).$$

The sampling distribution of the data depends only on θ, not ψ

$$L(\theta, \psi; x) = f(x; \theta).$$

Hence the joint posterior distribution of the parameters is

$$q(\theta, \psi; x) \propto f(x; \theta)p(\theta; \psi)g(\psi).$$

From the joint posterior

$$q(\theta, \psi; x) \propto f(x; \theta)p(\theta; \psi)g(\psi)$$

we can obtain the posterior density of θ by integrating w.r.t. ψ.

Further integration yields marginal distributions of individual components of θ.

For many hierarchical models the relevant integrations cannot be done analytically and the standard approach is to use MCMC to do the integration via computation.
Suppose θ is a vector of unknown parameters. As usual

$$q(\theta; x) \propto L(\theta; x)p(\theta)$$

and our aim of inference is to obtain $q(\theta; x)$. We can say that

$$q(\theta; x) = cL(\theta; x)p(\theta)$$

with

$$c = \left\{ \int L(\theta; x)p(\theta)d\theta \right\}^{-1}$$

We may be able to use Monte Carlo integration methods, e.g. importance sampling to find c, but this is often difficult. MCMC methods allows us to sample from $q(\theta; x)$ without knowing c.

Inference using Markov Chain Monte Carlo (MCMC) Methods
Let $q_i(\theta_i|\theta\setminus i, x)$ denote the posterior probability density of θ_i given values of $\theta_1, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_k$.

The Gibbs sampler requires that for each $i = 1, \ldots, k$ these conditional densities are ones that we can easily sample from.

The algorithm aims to obtain a random sample from $q(\theta|x)$ by iteratively and successively sampling from the individual $q_i(\theta_i|\theta\setminus i, x)$.
Gibbs Sampling

Initialize \(\theta \), i.e. find starting values \(\theta_i^{(1)} \), \(i = 1, \ldots, k \).

For \(j = 1, \ldots, M \)

1. Draw \(\theta_1^{(j+1)} \) from \(q_1(\theta_1 | \theta_{\setminus 1}^{(j)}, x) \); \(\theta_{\setminus 1}^{(j)} = (\theta_2^{(j)}, \theta_3^{(j)}, \ldots, \theta_k^{(j)}) \).
2. Draw \(\theta_2^{(j+1)} \) from \(q_2(\theta_2 | \theta_{\setminus 2}^{(j)}, x) \); \(\theta_{\setminus 2}^{(j)} = (\theta_1^{(j+1)}, \theta_3^{(j)}, \ldots, \theta_k^{(j)}) \).
3. \(\ldots \)
4. Draw \(\theta_k^{(j+1)} \) from \(q_k(\theta_k | \theta_{\setminus k}^{(j)}, x) \); \(\theta_{\setminus k}^{(j)} = (\theta_1^{(j+1)}, \theta_2^{(j+1)}, \ldots, \theta_{k-1}^{(j+1)}) \).
5. Put \(\theta^{(j+1)} = (\theta_1^{(j+1)}, \theta_2^{(j+1)}, \ldots, \theta_k^{(j+1)}) \). Set \(j = j + 1 \).
Gibbs Sampling

As $j \to \infty$, under suitable regularity conditions, the limiting distribution of the vector $\theta^{(j)}$ is the required posterior $q(\theta; x)$, i.e. for large j, $\theta^{(j)}$ is a random observation from $q(\theta; x)$.

The sequence $\theta^{(1)}, \theta^{(2)}, \ldots$ is one realisation of a Markov Chain, since the probability of $\theta^{(j+1)}$ is only dependent on $\theta^{(j)}$.

We need to run the Markov chain until it has converged to its stationary distribution — all observations from the burn-in phase are discarded.
Gibbs Sampling

Suppose we have generated a large random sample $\theta^{[1]}, \theta^{[2]}, \ldots, \theta^{[n]}$ using the Gibbs sampler.

Inferences about a single θ_i would be based on this sample. For example the posterior mean and variance of θ_i given x would be

$$\bar{\theta}_i = \frac{1}{n} \sum_j \theta_i^{[j]}$$

and

$$\frac{1}{n} \sum_j (\theta_i^{[j]} - \bar{\theta}_i)^2$$

using the ML estimator for the sample variance.

The output from MCMC can also be used to approximate integrals, e.g. for marginalisation.
Exercise

Let X_1, \ldots, X_n be a random sample. Consider the following hierarchical Bayesian model:

\[
X_1, \ldots, X_n \sim N(\theta, \sigma^2) \quad \sigma^2 \text{ is known},
\]
\[
\theta \sim N(0, \tau^2),
\]
\[
\frac{1}{\tau^2} \sim \text{Gamma}(a, b) \quad \text{where } a, b \text{ are known}.
\]

Derive the Gibbs sampler for this model.
Solution: First let’s derive

\[g(\theta|x, \tau^2) \propto f(x|\theta)p(\theta|\tau^2)p(\tau^{-2}) \]

We can omit all parts that do not depend on \(\theta \):

\[g(\theta|x, \tau^2) \propto f(x|\theta)p(\theta|\tau^2) \]

The RHS is equivalent to the likelihood \(\times \) prior in the normal-normal model seen earlier. So \(g(\theta|x, \tau^2) \) is the pdf

\[
N \left(\frac{\phi \sigma^2 + n \bar{x} \tau^2}{\sigma^2 + n \tau^2}, \left(\frac{\sigma^2 + n \tau^2}{\sigma^2 \tau^2} \right)^{-1} \right)
\]

Similarly,

\[g(\tau|x, \theta) \propto p(\theta|\tau^2)p(\tau^2). \]
Thus

\[g(\tau|x, \theta) \propto \frac{1}{\tau} \exp \left\{ -\frac{1}{2} \frac{\theta^2}{\tau^2} \right\} \left(\frac{1}{\tau^2} \right)^{a-1} \exp \left\{ -\frac{1}{\tau^2} \frac{1}{b} \right\} \]

\[\propto \left(\frac{1}{\tau^2} \right)^{a + \frac{1}{2} - 1} \exp \left\{ -\frac{1}{\tau^2} \left[\frac{\theta^2}{2} + \frac{1}{b} \right] \right\} \]

which specifies the pdf of

\[\text{Gamma} \left(a + \frac{1}{2}, \frac{\theta^2}{2} + \frac{1}{b} \right) \]
Thus the Gibbs sampler for this model is:

For \(i = 1, \ldots, m \) sample from the following conditionals

\[
\theta(i) | \tau^2(i-1), x \sim N \left(\frac{\phi \sigma^2 + n \bar{x} \tau^2}{\sigma^2 + n \tau^2}, \left(\frac{\sigma^2 + n \tau^2}{\sigma^2 \tau^2} \right)^{-1} \right)
\]

\[
\frac{1}{\tau^2(i)} \left| \theta(i), x \sim \text{Gamma} \left(a + \frac{1}{2}, \frac{\theta^2}{2} + \frac{1}{b} \right) \right.
\]
The Metropolis-Hastings Algorithm is an extension of Gibbs sampling for non-standard conditional densities $q_i(\theta_i|\theta_{\setminus i}^{(j)}, x)$, which cannot be sampled from directly.

The basic procedure is the same, but now acceptance/rejection sampling is used to draw $\theta_i^{(j+1)}$ from $q_i(\theta_i|\theta_{\setminus i}^{(j)}, x)$.
Exercise

Let \(X_1, \ldots, X_n \) be a random sample. Consider the following hierarchical Bayesian model of failure rates:

\[
X_1, \ldots, X_n \sim \text{Poisson}(\theta_i t_i) \quad \text{for fixed time } t_i,
\]
\[
\theta_i \sim \text{Gamma}(\alpha, \beta),
\]
\[
\alpha \sim \text{Exp}(a_0) \quad \text{for known } a_0,
\]
\[
\beta \sim \text{Gamma}(c, b_0) \quad \text{for known } c, b_0,
\]

where \(\alpha \) and \(\beta \) are independent. Show that the conditionals for \(\theta_i \) and \(\beta \) are Gamma distributions, whilst

\[
P(\alpha|\beta, \theta) \propto \left(\frac{\beta^\alpha}{\Gamma(\alpha)}\right)^n \left(\prod_{i=1}^n \theta_i\right)^{\alpha-1} \exp(-a_0 \alpha).
\]